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SUMMARY

This paper presents a new approach towards the parallel local remeshing of unstructured tetrahedral
grids on distributed memory parallel computers based on the message passing paradigm (MPI). The
overall remeshing approach consisting of the parallel determination of the regions to be remeshed and
the parallel local surface and volume remeshing is described in detail. An application of the remeshing
algorithms in a time-accurate simulation of bodies in relative motion demonstrates the capabilities of
the approach. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many application areas demand for a modi�cation of the computational grid during the sim-
ulation. This may be caused by bodies in relative motion which require a corresponding
adjustment of the volume grid. Additionally, for solution adaptive procedures where regions
are identi�ed by error estimates, the mesh may have to be changed to improve the numerical
accuracy.
Here unstructured grids have major advantage compared to multi-block structured grids

since they allow for local modi�cations whereas the latter require an adjustment of the
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global structure. Several approaches have already been proposed for modifying an unstructured
grid:

• Mesh movement methods [1, 2] do not alter the grid topology, only the node coordinates
are adjusted. These methods can be used for both the simulation of moving bodies as
well as for mesh adaptation purpose. Since the element connectivity remains unchanged,
they also are applicable for multi-block structured grids. The limits of these methods are
reached when inverted or badly shaped elements are created which usually happens for
large movements.

• Hierarchical re�nement is another commonly applied technique where the unstructured
mesh is altered in regions where a higher node density is required for improving the
solution accuracy [3–7]. This technique is limited to mesh adaptation and needs to be
combined with a mesh movement method for simulations of bodies in relative motion.
The limits of the mesh movement techniques thus remain.

• Another method applies local edge collapse operations for coarsening the mesh and an
incremental Delaunay point insertion algorithm for re�ning it [8] for mesh adaptation
purposes. Together with a mesh movement strategy this approach can also be applied
for time-dependent problems including large motions. This approach always requires and
operates on a valid mesh. If inverted elements are created after the mesh deformation,
the sequence of mesh deformation, coarsening and re�nement has to be repeated on a
fraction of the initial displacements, until the full displacements are applied. Therefore,
the e�ciency of this approach may be reduced in case of large relative movements.

• The local remeshing of unstructured grids is a quite general but also a complex approach.
A hole is extracted from a mesh, then remeshed and merged into the mesh again. This
technique has been applied successfully in several dynamic simulations including bodies
in relative motion [9–13]. In combination with a mesh deformation scheme the amount
of remeshings can usually be reduced to a minimum which results in a very e�cient
approach.

• A global remeshing is the most time-consuming approach for a modi�cation of a grid.
Here the complete grid is re-generated based on the surfaces moved or in�uenced by
the solution computed on the current grid. This technique has been applied for adaptive
�ow simulations [14–16] as well as for the simulation of moving bodies [12].

In this paper, the local remeshing approach has been selected since it represents a good
compromise between general applicability, e�ciency and mesh quality. Compared to the com-
bination of edge-collapsing and point insertion, it allows larger movements without any sub-
steps. In comparison to a global remeshing approach, it is much more e�cient and faster to
remesh a small subset of an existent grid only rather than to restart the mesh generation from
scratch. The approach is believed to be particularly e�cient for the time-accurate simulation
of bodies in relative motion. Concerning mesh quality, the local remeshing can be adjusted
according to the demands of the user. It can be limited to a minimum set of elements by
allowing elements of lower quality which results in a faster execution time. If more strin-
gent quality thresholds are applied, larger regions to be remeshed are selected. This normally
results in a longer execution time but should improve the overall grid quality since a larger
number of low-quality elements is removed.
The time-accurate prediction of �uid �ow around complex con�gurations in relative mo-

tion is a very important application area where a local remeshing can be applied. This type
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of simulation has become increasingly relevant in the aerospace industry over the last years
[17]. Typical applications involve meshes consisting of millions of mesh points to represent
the highly detailed geometric models with the necessary level of accuracy and to obtain an
accurate �ow solution. Due to the size of the problem exceeding the limited computational
resources of a single machine, it has to be divided and distributed across multiple proces-
sors to be able to get a result in a reasonable amount of time. For this type of simulation,
the �ow solution is usually computed in parallel, whereas changes to the mesh connectivity
induced by the relative movements are executed sequentially. On a shared memory paral-
lel platform, this continuous switching between multiple processors and only one processor
can easily be performed because of the globally accessible data. On the other hand, on a
distributed memory platform without direct access to remote data, this approach forces the
parallel computation to be stopped and requires the sequential local remeshing of the com-
plete grid on an additional single machine with enough memory. After the locally modi�ed
grid has again been decomposed into subdomains, the parallel �ow solution can be continued.
Whether this approach is feasible or not, clearly depends on the frequency of the exchanges
and the time required to perform the di�erent tasks. Particularly for the commonly utilized
distributed memory parallel clusters build from commodity o�-the-shelf (COTS) components,
this sequential bottleneck renders the procedure unfeasible if a frequent switching between
�ow computation and remeshing is required. Hence, in addition to a parallel CFD solver,
a parallel volume remeshing capability is also mandatory for an e�cient time-accurate simu-
lation of bodies in relative motion on distributed memory machines including frequent changes
of the unstructured grid.
This paper describes a new approach towards the parallel local remeshing of unstructured

tetrahedral grids on distributed memory parallel computers based on the message passing
paradigm (MPI). In Section 2, a general overview of the remeshing approach is presented.
The �rst step of the local remeshing procedure is the determination of the regions to be
remeshed which is described in Section 3. A detailed description of the parallel surface and
volume remeshing algorithms is given in Sections 4 and 5. The paper concludes with examples
demonstrating the capabilities of the local remeshing approach, Section 6.

2. PARALLEL REMESHING APPROACH

Given an unstructured tetrahedral mesh partitioned in n domains, the parallel local remeshing
algorithm can be formulated as follows:

1. Determine all regions to be remeshed in parallel by an analysis of the local elements
according to di�erent quality criteria. Additionally, perform intersection checks to detect
elements crossing each other due to local movements of surface and=or volume parts of
the mesh introduced by objects in relative motion.

2. Identify all continuous regions†† to be remeshed by a parallel colouring algorithm.
Repartition the mesh such that every continuous region is completely contained in one
domain and that the domains are approximately balanced in terms of meshing work
load and number of elements and nodes.

††All marked elements sharing a face are belonging to the same continuous region.
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3. Extract in every domain the marked regions from the current grid and remesh them
independently in parallel. After the meshing of the holes based on a constrained De-
launay triangulation [18] is completed, merge the local pieces together into a new dis-
tributed mesh.

4. If the imbalance in terms of number of elements and nodes per domain is above a user-
de�ned threshold, repartition the mesh such that a better load balancing is obtained.

5. Continue with the �ow computation.

If the regions to be remeshed reach sizes not handable by a single process, the procedure
fails. Less critically if no reasonable balancing of the holes can be found, the scalability of
the approach is reduced. In such cases alternative algorithms have to be developed for the
parallel local volume remeshing of distributed unstructured tetrahedral meshes.
An option would be the application of a parallel volume mesh generation algorithm which

�lls the holes with elements after the surface parts have been remeshed in parallel. Possible
candidates are the parallelized volume mesh generation algorithms based on octree, advancing
front or Delaunay methods [19–27].

3. DETERMINATION OF REGIONS TO BE REMESHED

The �rst step in a local remeshing approach is the determination of the regions to be remeshed.
Commonly applied strategies are the selection of invalid elements, the selection of highly
distorted elements [12] or, more generally, the selection of elements not ful�lling the quality
criterion applied. Another strategy is to select the elements which have a relative change in
volume above a maximum limit [10]. After all elements are marked forming the holes to be
remeshed, additional layers of elements adjacent to the marked element are added. By this
enlargement of the holes the mesh generator has more freedom where to insert new interior
nodes. Furthermore, this prevents a simple reconnect in very narrow and constrained regions.
The overall algorithm implemented for determining the regions to be remeshed can be

formulated as follows:

1. Evaluate and cache the mesh size at each point.
2. Mark all edges, triangles and tetrahedra not respecting the local mesh size.
3. Mark all elements with a quality criterion such as the sliver value below the given
threshold.

4. Mark all invalid elements.
5. If a motion analysis is activated by the user, check if any elements are intersecting each
other after being moved.

6. Smooth and enlarge the marked regions by adding neighbour elements.

In detail every triangle and tetrahedron is analysed according to the triangle minimal inner
angle �min, the tetrahedron sliver value � and the tetrahedron skewness value � with

�=

√
2
12
Average element edge length

Volume
(1)

�= 3

√
Volume of ideal tetrahedron with edge length l

Volume
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Figure 1. In�uence of the �ve spacings on ground surface.

l=
Radius of circumsphere√

5
12

(3)

Default threshold values found useful in practice are �min =1◦, �=5 and �=10. In addition,
elements having a non-positive volume are also marked to be remeshed.
In case the means to de�ne the local mesh size are changed or the mesh has been deformed,

also an analysis of the deviation from the prescribed spacing is applied. This is performed
by detecting all elements larger or smaller than a user-de�ned relaxation factor �‡‡ times the
desired local spacing computed from the average edge length of the element. A change of the
spacing can be caused by, for example, the addition, modi�cation or deletion of background
grids or sources. By checking the local mesh spacing against the prescribed lengths, it can
be guaranteed that the mesh always respects the initial speci�cations de�ned by the user.
Particularly when surfaces come close to each other, the smaller spacing of one part should
in�uence the other part (Figure 1).
In addition to the analysis of the element quality and the deviation from the prescribed mesh

size, an analysis of the intersection of elements is performed. Figure 2 clearly demonstrates the
necessity of such an investigation. Without an intersection check only the invalid and badly
distorted elements at the moved boundary parts are marked to be remeshed which would
result in a failure of the remeshing procedure. A brute-force approach testing each element
against any other has a complexity of O(N 2) and is not practicable for larger problems. Thus,
another algorithm is proposed for determining the elements intersecting each other e�ciently:

1. Loop over all elements:
(a) If no point of the element is moved: CONTINUE.
(b) If the element is inverted or is at the boundary: Add the element to the set of

elements to be tested.

‡‡In this work, a value of �=1:9 has been used.
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Figure 2. Region to be remeshed due to the movement of boundary parts.

2. While the set of elements to be tested is not empty:
(a) Get the next element E to be tested.
(b) Collect all neighbours Nf sharing a face with the current element.
(c) Clear the set of intersection candidates (an intersection candidate is de�ned by a

pair of elements).
(d) Add all intersection candidates given by the pairs (neighbour Nf, element E) to

the set of intersection candidates.
(e) While the set of intersection candidates is not empty:

i. Get the next intersection candidate (E1, E2).
ii. If the pair of elements has already been tested: CONTINUE.
iii. Test for intersections between the pair of elements.
iv. If no intersection is found: CONTINUE.
v. Insert the pair of elements in the set of candidates already processed to avoid a
second check.

vi. Mark both elements and their corresponding neighbours for remeshing.
vii. For all neighbours NE1f sharing a face of the element E1:

A. If the pair of elements (NE1f , E1) has already been processed: CONTINUE.
B. A new intersection candidate is found. Add the pair of elements to the set
of intersection candidates.

This algorithm assumes a valid mesh (i.e. built from a conforming set of non-overlapping
elements completely �lling the space) based on the old coordinates. With this approach a
minimum set of elements is determined which may have intersections with other elements
based on the new coordinates, which are obtained after the mesh has been moved or deformed.
Subsequently, all selected elements are tested for intersections with their neighbours sharing
a face. By monitoring the already processed pairs of elements, multiple intersection tests of
the same pair of elements can be avoided. This is implemented by means of a hash set

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1361–1379



PARALLEL REMESHING OF UNSTRUCTURED VOLUME GRIDS 1367

which supports an e�cient look-up. If an intersection is found, the search is continued at the
neighbour element until all intersection candidates are processed.
This sequential algorithm will not �nd intersections between elements in di�erent domains

of a distributed mesh since the search stops at the domain boundaries. Hence, additional steps
have to be performed to enable the localization of elements intersecting each other also in a
parallel environment.
For the parallel intersection algorithm proposed, the mesh is expected to be partitioned such

that all domains have a one-cell overlap between each other. Then the parallel algorithm for
the determination of intersecting elements within and across domains can be formulated as
follows:

1. Determine the set of local elements to be tested for intersections and proceed as in step
1 of the sequential algorithm.

2. While the set of elements to be tested is not empty:
(a) Proceed as in step 2(a)–2(e) of the sequential algorithm. Additionally, if an inter-

section candidate contains a ghost cell,§§ add this pair of elements to the set of
elements to be sent to the process owning this ghost cell.

3. While TRUE:
(a) Determine the global number of intersection candidates to be exchanged from the

local set of candidates to be sent.
(b) If the global number of intersection candidates is zero: BREAK.
(c) Send the own intersection candidates to the other domains and receive from them

their intersection candidates.
(d) Repeat step 2(a) with the received intersection candidates.

This algorithm computes iteratively the intersections between elements belonging to di�erent
domains by a parallel ‘neighbour walking’ approach. In each round, intersection candidates
are exchanged and processed. If a domain boundary is reached, the intersection candidates
are forwarded to the neighbour domain and the search has to be continued in the next round.
After each round, a parallel synchronization point is reached enabling a consistent decision to
be made whether to continue or to stop. This parallel algorithm will result in the same set of
intersecting elements compared to the sequential version since the same intersection checks
are performed.
After all elements to be remeshed have been selected, normally a post-processing of these

regions is performed. In general, the selected elements will not form compact regions with a
smooth outer boundary. They also may consist of narrow and constrained regions which may
by simply reconnected in the remeshing stage. Therefore, to obtain compact regions with a
smooth boundary and to allow the mesh generator more freedom where to place new internal
points, the selected regions are smoothed and enlarged. This is performed by loops over the
elements where each element sharing a node, an edge or a face of a marked element gets
the same marker assigned. In this work, all neighbours sharing a node in combination with
one–three smoothing loops have found to be a reasonable choice. An example of such a
smoothing procedure is shown in Figure 3.

§§Ghost cells are replicated cells in the overlap area of parallel domains belonging to another domain.
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Figure 3. In�uence of number of smoothing loops on remeshed surface.

4. PARALLEL SURFACE REMESHING

The surface remeshing algorithm [28] starts with the extraction of the selected regions from
the given surface mesh. First all mesh edges lying on CAD curves are rediscretized by the
following algorithm:

1. Find all mesh edges in the surface region to be remeshed which are linked to CAD
edges and are not at the boundary of this region (Figure 4):

2. Group all collected mesh edges and sort them according to their CAD edge number.
3. Colour all mesh edges which are connected to each other and share the same CAD
edge number.

4. Loop over all colours:
(a) Determine the start and the end point of the connected sequence of mesh edges

sharing the same colour.
(b) Project the start and the end point onto the underlying parametric CAD curve to

determine the parameter interval in which the curve has to be rediscretized.
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Figure 4. Internal mesh edges linked to topological edges which need to be replaced by mesh edges
generated by the rediscretization of the underlying parametric CAD curve.

(c) Discretize the underlying parametric CAD curve from the start to the end point
according to the speci�ed mesh size by means of algorithm already used for the
initial discretization of the curves [29].

The result of this curve rediscretization is shown in Figure 4. Then all rediscretized mesh
edges linked to CAD edges and all mesh edges at the boundary of the extracted submesh
are collected and used to form the initial fronts for the advancing front surface meshing. The
correct orientation of these initial fronts is derived from the orientation of the underlying
CAD surfaces relative to the surface mesh, which has been determined during the initial
surface mesh generation. Subsequently, an advancing front triangulation of each CAD face is
performed and the new mesh is merged with the old one.
In pseudo-code the algorithm can be formulated as follows:

geometry = InitGeometry();
meshSizeSpec = InitMeshSizeSpecification();
surfaceMesh = InitSurfaceMesh();
// --- analyse mesh ---
meshAnalyser.MarkRegionsToBeRemeshed(surfaceMesh);
// --- extract selected regions ---
subMesh = surfaceMesh.ExtractAndRemoveSelectedSubmesh();
// ===== remesh submesh =====
topoFacesSet = submesh.GetAllTopoFaceIDs();
/* determine orientation of surfaces relative to

orientation of triangles */
DetermineSurfaceOrientations(geometry, topoFacesSet,

subMesh);
boundMesh = submesh.ExtractBoundaryEdges();
curveDiscretizer.Rediscretize(geometry, meshSizeSpec,

boundMesh);
// --- remesh holes ---
for(FI=topoFacesSet.begin(); FI!=topoFacesSet.end(); ++FI){
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advFront = initialFrontGenerator.InitFront(geometry, *FI,
boundMesh);

holeMesh = advFrontTriangulator.Triangulate(geometry,
meshSizeSpec,
advFront);

meshEnhancer.Optimize(geometry, meshSizeSpec, holeMesh);
surfaceMesh += holeMesh;

}
DoPostProcessing(surfaceMesh);

For the parallel surface remeshing two strategies have been implemented.

• The �rst strategy operates in parallel on the local domains and preserves the domain
boundaries, hence, the sequential algorithms described above are applicable without any
modi�cations. This is the approach used during the volume remeshing described in
Section 5.

• In addition to the parallelization over the spatial domains, a parallelization over the
di�erent tasks is also possible. This can be achieved by parallelizing the loop over the
topological edges to be rediscretized as well as the loop over the topological faces to
be remeshed [30].

5. PARALLEL VOLUME REMESHING

The volume remeshing algorithm starts with the extraction of the selected regions from the
given volume mesh. Then the missing submesh boundary faces are constructed. If also the
remeshing of the surface boundary is enabled by the user, all parts of the extracted submesh
boundary lying on the surface boundary of the mesh are remeshed by means of the procedures
presented in Section 4. Then the volume holes are �lled with elements by a Delaunay volume
meshing algorithm [18] and the new submesh is merged with the unmodi�ed parts of the
mesh.
In pseudo-code the local volume remeshing algorithm can be formulated as follows:

geometry = InitGeometry();
meshSizeSpec = InitMeshSizeSpecification();
volumeMesh = InitVolumeMesh();
// --- analyse mesh ---
meshAnalyser.MarkRegionsToBeRemeshed(volumeMesh);
while(TRUE){
// --- extract selected regions ---
subMesh = volumeMesh.ExtractSelectedSubmesh();
surfaceMesh = subMesh.ExtractBoundary();
if(remeshSurface){
// --- remesh surface ---
topoFacesSet = surfaceMesh.GetTopoFaceIDs();
topoEdgesSet = surfaceMesh.GetTopoEdgeIDs();
boundaryMesh = surfaceMesh.ExtractAndRemove(topoFacesSet,
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topoEdgesSet);
RemeshSurfaceMesh(geometry, meshSizeSpec, boundaryMesh);
surfaceMesh += boundaryMesh;

}
// --- remesh volume ---
holeMesh = DelaunayTriangulator.Triangulate(meshSizeSpec,

surfaceMesh);
meshOptimizer.Optimize(holeMesh);
if(errorOccurred){
if(enlargementCount < enlargementCountMax){
meshAnalyser.EnlargeRegionsToBeRemeshed(volumeMesh);
enlargementCount++;
CONTINUE; // try again after region has been enlarged

}
else EXIT_WITH_ERROR;

}
else{
volumeMesh.RemoveSelectedSubmesh();
volumeMesh += holeMesh;
BREAK; // remeshing succeeded

}
}

In case of errors during the boundary recovery due to not recoverable con�gurations of hole
boundary triangles, an automatic enlargement of the selected regions has been implemented.
It has been found that this is an e�ective strategy in practice which enables the remeshing to
succeed in the following attempts.
In Figure 5 an example is given which illustrates the di�erent steps of the local volume

remeshing algorithm. At �rst, the mesh size speci�cation is modi�ed by an additional point
source. All elements not respecting the mesh size any more are determined which results in the
selected region shown. After the extraction of this submesh, the boundary faces of the hole are
determined and the submesh surface part lying on the CAD surface is remeshed. Subsequently,
a tetrahedral volume mesh is generated inside this hole formed by the unmodi�ed and the new
surface boundary triangles. Finally, the remeshed hole is merged with the unmodi�ed parts of
the mesh. The change of the local element size due to the additional point source is shown
in a cutting plane. There the desired transition from coarse to �ne elements can be seen.
In pseudo-code the parallel local volume remeshing algorithm can be formulated as follows:

geometry = InitGeometry(); // <-- replicated
meshSizeSpec = InitMeshSizeSpecification(); // <-- replicated
volumeMesh = InitVolumeMesh(); // <-- distributed
// --- analyse mesh ---
meshAnalyser.MarkRegionsToBeRemeshed(volumeMesh);
while(TRUE){
// --- constrained mesh re-partitioning ---
volumeMesh.RepartitionMesh(ensureLocalSelectedRegions);
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// --- extract selected regions ---
subMeshPerProc = volumeMesh.ExtractSelectedLocalSubmesh();
surfMeshPerProc = subMeshPerProc.ExtractBoundary();
if(remeshSurface){
// --- remesh surface ---
topoFacesSet = surfMeshPerProc.GetTopoFaceIDs();
topoEdgesSet = surfMeshPerProc.GetTopoEdgeIDs();
boundMeshPerProc = surfMeshPerProc.ExtractAndRemove(topoFacesSet,

topoEdgesSet);
RemeshSurfaceMesh(geometry, meshSizeSpec, boundMeshPerProc);
surfMeshPerProc += boundMeshPerProc;

}
// --- remesh volume ---
holeMeshPerProc = DelaunayTriangulator.Triangulate(meshSizeSpec,

surfMeshPerProc);
meshOptimizer.Optimize(holeMeshPerProc);
if(errorOccurred){
if(enlargementCount < enlargementCountMax){
meshAnalyser.EnlargeRegionsToBeRemeshed(volumeMesh);
enlargementCount++;
CONTINUE; // try again after region has been enlarged

}
else EXIT_WITH_ERROR;

}
else{
volumeMesh.RemoveSelectedSubmesh();
volumeMesh += holeMeshPerProc;
BREAK; // remeshing succeeded

}
}

In Figure 6, the main steps of this parallel local remeshing algorithm are illustrated based
on an example where two point sources are added to the mesh size speci�cation used for the
generation of the initial mesh. At �rst all parts to be remeshed are determined in parallel.
The selected regions form two distinct areas which are distributed across the parallel domains.
After the re-partitioning, purely local regions are obtained which are also balanced across the
domains. Then the local remeshing can be performed in each domain in parallel resulting in
the locally modi�ed grid shown.
Compared to a parallel volume meshing working on a distributed hole it will clearly be case

dependent whether this approach performs better or not. In case of a single large region to
be remeshed, problems may arise for the presented approach because only one processor will
perform the local remeshing. This may lead to a signi�cant memory and time consumption.
Then a distributed meshing may be the preferable approach as it avoids memory bottlenecks
and reduces the total time required. The other extremum are many small holes, for which the
presented approach may be the most e�cient solution. In this case, the amount of time required
to re-partition the grid to obtain purely local holes is small compared to the meshing time.
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Figure 5. Example showing the di�erent steps executed during the local volume remeshing.

Secondly, the meshing work is approximately balanced due to the distribution of the holes
across all processes. And thirdly, no communication and synchronization is required during
the local remeshing of each hole in parallel resulting in a fast parallel execution. Between
these extreme cases, it will depend on the application in question and on the implementation
itself which of the two approaches shows a faster run-time performance.
The re-partitioning of the distributed unstructured mesh across n domains is performed

to obtain purely local regions to be remeshed and to balance the regions and therewith the
meshing work across all processes. This is performed by the following algorithm:

1. Ensure that the mesh is partitioned such that all domains have a one-cell overlap between
each other.
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Figure 6. Example showing the main steps of the parallel remeshing algorithm.

2. Colour all regions in an advancing front manner to determine all elements belonging to
the same region. This is performed in several rounds until no update needs to be made.
In each round, the colours between the ghost elements and the corresponding original
elements are exchanged to advance also across domain boundaries. This results in the
set of independent regions R.

3. Switch the representation of the distributed mesh such that all domains have no element
overlap any more but only a one-node overlap between each other.

4. Construct the distributed graph G=(V; E) of the given mesh where the vertices v∈V
are identical to the global node numbers of the mesh nodes and the graph edges e∈E
are de�ned by the node-to-node connectivity. Assign a weight of one to each vertex.

5. Modify the graph G such that for each independent region r ∈R a vertex vr is added to
G. For each new vertex vr determine the set of processes P ⊆ 1; : : : ; n containing nodes
of this region and add the vertex vr to the process p= mink ∈ P(k) with the smallest
process number of the processes in P. Additionally, for each local vertex v contained
in a region r add an edge e=(vr; v) from the corresponding region vertex to this local
vertex to the set of edges E.

6. Agglomerate all nodes directly connected with a region node to this region node and
accumulate the vertex weights.

7. Compute the destination process for each vertex of the agglomerated graph. To achieve a
balance of both the number of nodes and the remeshing work later on, a multi-constraint
approach is required. The �rst set of weights w(1)v to be balanced are the vertex weights
assigned and accumulated for each vertex as de�ned above. The second set of weights
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is given by the function

w(2)v =

{
1000 : v= vr; r ∈R
1 : otherwise

(4)

By this de�nition of weights all region nodes are assigned a high weight to force them
to be distributed across the processes by balancing the weights. In this work, the parallel
PARMETIS library [31] is utilized to compute the new destination processes by means
of the integrated multi-constraint graph partitioning scheme [32].

8. Propagate the destination process to each vertex agglomerated previously from the cor-
responding region vertices.

9. Determine the destination process for each element, face and edge, respectively, de-
pending on their region a�liation and, if not contained in any region, depending on the
destination processes of their nodes.

10. Re-distribute the nodes, elements, faces and edges accordingly.

By this constrained re-partitioning it can be assured that each region to be remeshed is
contained completely in one process and that the meshing work is approximately balanced
across the processes.

6. APPLICATIONS

A time-accurate CFD simulation of bodies in relative motion is presented where local remesh-
ing had to be frequently applied to restore a valid grid throughout the computation. The sim-
ulation was performed by means of the EADS M SimServer simulation environment [33].

Table I. Reference conditions for the two �ight cases.

Case 1 Case 2

Mach number 0.962 1.055
Altitude (ft) 6332 10832
Angle of attack (deg) 0.46 −0.65
Dive angle (deg) 43 44

Table II. Breakdown of total time spent in the major simulation stages.

Task Fraction of total time (%)

CFD solution 40
Mesh deformation 10.3
Volume hole enlargements 0.3
Volume mesh analysis 3.4
Volume remeshing 37
Re-partitioning 6.1

Motion application
∑
57.1

Others (I/O, . . . ) 2.9
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Figure 7. Comparison of the computed displacements and orientations against
�ight measurement data for Case 1.

Figure 8. Contour plot of the computed Mach number distributions during the separation.
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Figure 9. Cuts through the mesh at x=11:5m at di�erent stages of the simulation.

It has been designed for the e�cient parallel execution of multi-disciplinary simulations,
whereby existing, validated, and highly optimised parallel CFD solvers are applied for the
�ow solution part. Into this environment the meshing algorithms described above has been
integrated and closely coupled with the �ow solver.
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The example presented shows the release of a JDAM from a F/A-18C, which has been
selected as a common test case in the Applied CFD Challenge II [17, 34]. Both release
conditions are listed in Table I.
For Case 1 the time-accurate simulation lasted 10.4 h on 24 Intel XEON processors running

at 2.66GHz, the parts required for the di�erent tasks are summarized in Table II. About 150
local remeshings steps were performed within the 40 physical time steps simulated. After all
remeshings the number of nodes and elements in the mesh increased by approximately 10%
from ≈ 2:1 to ≈ 2:3 million nodes and from ≈ 12:1 to ≈ 13:4 million elements.
Similar timings and numbers had been obtained for Case 2.
In Figure 7, the computed trajectory is plotted against the �ight test measurements for

Case 1. It can be observed that the two separation predictions compare well with �ight test
data. In addition, they have been performed fully in parallel on a distributed memory platform.
Due to the e�ciently utilized parallel computing power, the simulations were performed also
in an acceptable amount of time. This clearly highlights the powerful capabilities of the
parallel local remeshing approach developed in this work (Figures 8 and 9).
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